Zum Hauptinhalt springen

Molecular modeling and LC-MS-based metabolomics of a glutamine-valproic acid (Gln-VPA) derivative on HeLa cells.

Fragoso-Vázquez, MJ ; Méndez-Luna, D ; et al.
In: Molecular diversity, Jg. 25 (2021-05-01), Heft 2, S. 1077-1089
Online academicJournal

Titel:
Molecular modeling and LC-MS-based metabolomics of a glutamine-valproic acid (Gln-VPA) derivative on HeLa cells.
Autor/in / Beteiligte Person: Fragoso-Vázquez, MJ ; Méndez-Luna, D ; Rosales-Hernández, MC ; Luna-Palencia, GR ; Estrada-Pérez, A ; Fromager, B ; Vásquez-Moctezuma, I ; Correa-Basurto, J
Link:
Zeitschrift: Molecular diversity, Jg. 25 (2021-05-01), Heft 2, S. 1077-1089
Veröffentlichung: Leiden, The Netherlands : ESCOM Science Publishers, c1995-, 2021
Medientyp: academicJournal
ISSN: 1573-501X (electronic)
DOI: 10.1007/s11030-020-10089-z
Schlagwort:
  • Cell Proliferation drug effects
  • Cell Survival drug effects
  • Chromatography, Liquid
  • Glutaminase antagonists & inhibitors
  • Glutaminase chemistry
  • HeLa Cells
  • Humans
  • Mass Spectrometry
  • Metabolome drug effects
  • Metabolomics
  • Models, Molecular
  • Antineoplastic Agents chemistry
  • Antineoplastic Agents pharmacology
  • Glutamine chemistry
  • Glutamine pharmacology
  • Valproic Acid chemistry
  • Valproic Acid pharmacology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Mol Divers] 2021 May; Vol. 25 (2), pp. 1077-1089. <i>Date of Electronic Publication: </i>2020 Apr 24.
  • MeSH Terms: Antineoplastic Agents* / chemistry ; Antineoplastic Agents* / pharmacology ; Glutamine* / chemistry ; Glutamine* / pharmacology ; Valproic Acid* / chemistry ; Valproic Acid* / pharmacology ; Cell Proliferation / drug effects ; Cell Survival / drug effects ; Chromatography, Liquid ; Glutaminase / antagonists & inhibitors ; Glutaminase / chemistry ; HeLa Cells ; Humans ; Mass Spectrometry ; Metabolome / drug effects ; Metabolomics ; Models, Molecular
  • References: Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013. (PMID: 10.1016/j.cell.2011.02.0132137623021376230) ; Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548. https://doi.org/10.1101/gad.1756509. (PMID: 10.1101/gad.1756509192701542763495) ; Locasale JW, Cantley LC, Heiden MGV (2009) Cancer’s insatiable appetite. Nat Biotechnol 27:916–917. https://doi.org/10.1038/nbt1009-916. (PMID: 10.1038/nbt1009-916198164483744822) ; Warburg O (1956) On the origin of cancer cells. Science 123:309–314. https://doi.org/10.1126/science.123.3191.309. (PMID: 10.1126/science.123.3191.30913298683) ; Liberti MV, Locasale JW (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218. https://doi.org/10.1016/j.tibs.2015.12.001. (PMID: 10.1016/j.tibs.2015.12.001267784784783224) ; Bensinger SJ, Christofk HR (2012) New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 23:352–361. https://doi.org/10.1016/j.semcdb.2012.02.003. (PMID: 10.1016/j.semcdb.2012.02.00322406683) ; Aledo JC, Gomez-Fabre PM, Olalla L, Marquez J (2000) Identification of two human glutaminase loci and tissue-specific expression of the two related genes. Mamm Genome 11:1107–1110. https://doi.org/10.1007/s003350010190. (PMID: 10.1007/s00335001019011130979) ; Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159. https://doi.org/10.1146/annurev.nu.15.070195.001025. (PMID: 10.1146/annurev.nu.15.070195.0010258527215) ; McDermott LA, Iyer P, Vernetti L, Rimer S, Sun J, Boby M, Yang T, Fioravanti M, O’Neill J, Wang L, Drakes D, Katt W, Huang Q, Cerione R (2016) Design and evaluation of novel glutaminase inhibitors. Bioorg Med Chem 2:1819–1839. https://doi.org/10.1016/j.bmc.2016.03.009. (PMID: 10.1016/j.bmc.2016.03.009) ; Yuan LQ, Sheng XG, Willson AK, Roque DR, Stine JE, Guo H, Jones HM, Zhou CX, Bae-Jump VL (2015) Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocr-Relat Cancer 22:577–591. https://doi.org/10.1530/ERC-15-0192. (PMID: 10.1530/ERC-15-0192260454714500469) ; Mohamed A, Deng X, Khuri FR, Owonikoko TK (2014) Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer 15:7–15. https://doi.org/10.1016/j.cllc.2013.09.001. (PMID: 10.1016/j.cllc.2013.09.00124377741) ; Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, Mackinnon AL, Parlati F, Rodriguez ML, Shwonek PJ, Sjogren EB, Stanton TF, Wang T, Yang J, Zhao F, Bennett MK (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 13:890–901. https://doi.org/10.1158/1535-7163.MCT-13-0870. (PMID: 10.1158/1535-7163.MCT-13-087024523301) ; Luna-Palencia GR, Martinez-Ramos F, Vasquez-Moctezuma I, Fragoso-Vazquez MJ, Mendieta-Wejebe JE, Padilla-Martinez II, Sixto-Lopez Y, Mendez-Luna D, Trujillo-Ferrara J, Meraz-Rios MA, Fonseca-Sabater Y, Correa-Basurto J (2014) Three amino acid derivatives of valproic acid: design, synthesis, theoretical and experimental evaluation as anticancer agents. Anti-Cancer Agent Med Chem 14:984–993. https://doi.org/10.2174/1871520614666140127113218. (PMID: 10.2174/1871520614666140127113218) ; Martinez-Ramos F, Luna-Palencia GR, Vasquez-Moctezuma I, Mendez-Luna D, Fragoso-Vazquez MJ, Trujillo-Ferrara J, Meraz-Rios MA, Mendieta-Wejebe JE, Correa-Basurto J (2016) Docking studies of glutamine valproic acid derivative (S)-5- amino-2-(heptan-4-ylamino)-5-oxopentanoic acid (Gln-VPA) on HDAC8 with biological evaluation in HeLa cells. Anticancer Agents Med Chem 16:1485–1490. https://doi.org/10.2174/1871520616666160204111158. (PMID: 10.2174/187152061666616020411115826845132) ; Prestegui-Martel B, Bermudez-Lugo JA, Chavez-Blanco A, Duenas-Gonzalez A, Garcia-Sanchez JR, Perez-Gonzalez OA, Padilla M II, Fragoso-Vazquez MJ, Mendieta-Wejebe JE, Correa-Basurto AM, Mendez-Luna D, Trujillo-Ferrara J, Correa-Basurto J (2016) N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. J Enzyme Inhib Med Chem 31:140–149. https://doi.org/10.1080/14756366.2016.1210138. (PMID: 10.1080/14756366.2016.121013827483122) ; Shah NJ, Sureshkumar S, Shewade DG (2015) Metabolomics: a tool ahead for understanding molecular mechanisms of drugs and diseases. Indian J Clin Biochem 30:247–254. https://doi.org/10.1007/s12291-014-0455-z. (PMID: 10.1007/s12291-014-0455-z26089608) ; Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290. (PMID: 10.1002/jcc.20290162006361989667) ; Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035. (PMID: 10.1002/jcc.2003515116359) ; Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397. (PMID: 10.1063/1.464397) ; van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34:1311–1327. https://doi.org/10.1080/00268977700102571. (PMID: 10.1080/00268977700102571) ; Kimberley R. Cousins (2005) ChemDraw Ultra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. http://www.cambridgesoft.com . See Web site for pricing options. J Am Chem Soc 127(11):4115–4116. https://doi.org/10.1021/ja0410237. ; Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford. ; Dennington R, Keith TA, Millam JM (2016) GaussView, Version 5. Semichem Inc., Shawnee Mission. ; Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256. (PMID: 10.1002/jcc.212561939978019399780) ; DeLano WL (2002) The PyMOL Molecular Graphics System., 0.99. DeLano Scientific, San Carlos. ; Baig MH, Ahmad K, Roy S, Ashraf JM, Adil M, Siddiqui MH, Khan S, Kamal MA, Provazník I, Choi I (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22:572–581. https://doi.org/10.2174/1381612822666151125000550. (PMID: 10.2174/138161282266615112500055026601966) ; Poli G, Martinelli A, Tuccinardi T (2016) Reliability analysis and optimization of the consensus docking approach for the development of virtual screening studies. J Enzyme Inhib Med Chem 31:167–173. https://doi.org/10.1080/14756366.2016.1193736. (PMID: 10.1080/14756366.2016.119373627311630) ; Rosales-Hernández MC, Correa-Basurto J (2015) The importance of employing computational resources for the automation of drug discovery. Expert Opin Drug Discov 10:213–219. https://doi.org/10.1517/17460441.2015.1005071. (PMID: 10.1517/17460441.2015.100507125682781) ; Thangavelu K, Chong QY, Low BC, Sivaraman J (2014) Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA). Sci Rep 4:3827. https://doi.org/10.1038/srep03827. (PMID: 10.1038/srep03827244519794929687) ; Ramachandran S, Pan CQ, Zimmermann SC, Duvall B, Tsukamoto T, Low BC, Sivaraman J (2016) Structural basis for exploring the allosteric inhibition of human kidney type glutaminase. Oncotarget 7:57943–57954. https://doi.org/10.18632/oncotarget.10791. (PMID: 10.18632/oncotarget.10791274628635295402) ; Thangavelu K, Pan CQ, Karlberg T, Balaji G, Uttamchandani M, Suresh V, Schuler H, Low BC, Sivaraman J (2012) Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci USA 109:7705–7710. https://doi.org/10.1073/pnas.1116573109. (PMID: 10.1073/pnas.111657310922538822) ; Chen Z, Han L, Xu M, Xu Y, Qian X (2013) Rationally designed multitarget anticancer agents. Curr Med Chem 20:1694–1714. https://doi.org/10.2174/0929867311320130009. (PMID: 10.2174/092986731132013000923410168) ; Kucuksayan E, Ozben T (2017) Hybrid compounds as multitarget directed anticancer agents. Curr Top Med Chem 17:907–918. https://doi.org/10.2174/1568026616666160927155515. (PMID: 10.2174/156802661666616092715551527697050) ; Zachar Z, Marecek J, Maturo C, Gupta S, Stuart SD, Howell K, Schauble A, Lem J, Piramzadian A, Karnik S, Lee K, Rodríguez R, Shorr R, Bingham PM (2011) Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med 89:1137–1148. https://doi.org/10.1007/s00109-011-0785-8. (PMID: 10.1007/s00109-011-0785-821769686) ; Kitaura Y, Inoue K, Kato N, Matsushita N, Shimomura Y (2015) Enhanced oleate uptake and lipotoxicity associated with laurate. FEBS Open Bio 29:485–491. https://doi.org/10.1016/j.fob.2015.05.008. (PMID: 10.1016/j.fob.2015.05.008) ; Sanner T, Grimsrud TK (2015) Nicotine: carcinogenicity and effects on response to cancer treatment. Front Oncol 5:196. https://doi.org/10.3389/fonc.2015.00196. (PMID: 10.3389/fonc.2015.00196263802254553893) ; Moro K, Nagahashi M, Ramanathan R, Takabe K, Wakai T (2016) Resolvins and omega three polyunsaturated fatty acids: clinical implications in inflammatory diseases and cancer. World J Clin Cases 4:155–164. https://doi.org/10.12998/wjcc.v4.i7.155. (PMID: 10.12998/wjcc.v4.i7.155274585904945585) ; Chen Y, Qin Y, Li L, Chen J, Zhang X, Xie Y (2017) Morphine can inhibit the growth of breast cancer MCF-7 cells by arresting the cell cycle and inducing apoptosis. Biol Pharm Bull 40:1686–1692. https://doi.org/10.1248/bpb.b17-00215. (PMID: 10.1248/bpb.b17-0021528740043) ; Wu L, Li L, Meng S, Qi R, Mao Z, Lin M (2013) Expression of arginosuccinate synthetase in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 28:365–368. https://doi.org/10.1111/jgh.12043. (PMID: 10.1111/jgh.1204323339388) ; Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2004) Incidence and distribution of arginosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer 100:826–833. https://doi.org/10.1002/cncr.20057. (PMID: 10.1002/cncr.2005714770441) ; Savaraj N, You M, Wu C, Kuo MT, Dinh V, Wangpaichitr M, Feun L (2012) Targeting arginosuccinate synthetase in cancer therapy. In: Chatterjee M, Kashfi K (eds) Cell signaling & molecular targets in cancer. Springer, New York, pp 37–51. (PMID: 10.1007/978-1-4614-0730-0_3) ; Yang M, Soga T, Pollard PJ, Adam J (2012) The emerging role of fumarate as an oncometabolite. Front. Oncol. 2:85. https://doi.org/10.3389/fonc.2012.00085. (PMID: 10.3389/fonc.2012.00085228662643408580) ; Kitaura Y, Inoue K, Kato N, Matsushita N, Shimomura Y (2010) Enhanced oleate uptake and lipotoxicity associated with laurate. FEBS Open Bio 5:485–491. https://doi.org/10.1016/j.fob.2015.05.008. (PMID: 10.1016/j.fob.2015.05.008) ; Asgari Y, Zabihinpour Z, Salehzadeh-Yazdi A, Schreiber F, Masoudi-Nejad A (2015) Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation. 105:275–281. https://doi.org/10.1016/j.ygeno.2015.03.001. (PMID: 10.1016/j.ygeno.2015.03.001) ; Ren JG, Seth P, Ye H, Gou K, Hanai JI, Husain Z, Sukhatme VP (2017) Citrate suppresses tumor growth in multiple models through inhibition of glycolysis, the tricarboxylic acid cycle and the IGF-1R pathway. Sci Rep 7:4537. https://doi.org/10.1038/s41598-017-04626-4. (PMID: 10.1038/s41598-017-04626-4286744295495754) ; Sun L, Liu M, Sun GC, Yang X, Qian Q, Feng S, Mackey LV, Coy DH (2016) Notch signaling activation in cervical cancer cells induces cell growth arrest with the involvement of the nuclear receptor NR4A2. J Cancer 7:1388–1395. https://doi.org/10.7150/jca.15274. (PMID: 10.7150/jca.15274274715544964122) ; Chen T, Wang T, Liang W, Zhao Q, Yu Q, Ma CM, Zhuo L, Guo D, Zheng K, Zhou C, Wei S, Huang W, Jiang J, Liu L, Li S, He J, Jiang Y (2019) PAK4 phosphorylates fumarase and blocks TGFβ-Induced cell growth arrest in lung cancer cells. Can Res 79:1383–1397. https://doi.org/10.1158/0008-5472.CAN-18-2575. (PMID: 10.1158/0008-5472.CAN-18-2575)
  • Grant Information: 254600 CONACYT; SEP-CONACYT-ANUIES-ECOS Francia: 296637 CONACYT
  • Contributed Indexing: Keywords: Anti-proliferative LC–MS-based metabolomic; Dual-target inhibitor; Gln-VPA; Glutaminase
  • Substance Nomenclature: 0 (Antineoplastic Agents) ; 0RH81L854J (Glutamine) ; 614OI1Z5WI (Valproic Acid) ; EC 3.5.1.2 (Glutaminase)
  • Entry Date(s): Date Created: 20200425 Date Completed: 20211122 Latest Revision: 20211122
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -