Zum Hauptinhalt springen

Long-term Intracellular Recording of Optogenetically-induced Electrical Activities using Vertical Nanowire Multi Electrode Array.

Yoo, J ; Kwak, H ; et al.
In: Scientific reports, Jg. 10 (2020-03-09), Heft 1, S. 4279
Online academicJournal

Titel:
Long-term Intracellular Recording of Optogenetically-induced Electrical Activities using Vertical Nanowire Multi Electrode Array.
Autor/in / Beteiligte Person: Yoo, J ; Kwak, H ; Kwon, J ; Ha, GE ; Lee, EH ; Song, S ; Na, J ; Lee, HJ ; Lee, J ; Hwangbo, A ; Cha, E ; Chae, Y ; Cheong, E ; Choi, HJ
Link:
Zeitschrift: Scientific reports, Jg. 10 (2020-03-09), Heft 1, S. 4279
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2020
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-020-61325-3
Schlagwort:
  • HEK293 Cells
  • Humans
  • Action Potentials
  • Cell Physiological Phenomena
  • Electrodes
  • Nanowires chemistry
  • Optogenetics
  • Silicon chemistry
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2020 Mar 09; Vol. 10 (1), pp. 4279. <i>Date of Electronic Publication: </i>2020 Mar 09.
  • MeSH Terms: Action Potentials* ; Cell Physiological Phenomena* ; Electrodes* ; Optogenetics* ; Nanowires / *chemistry ; Silicon / *chemistry ; HEK293 Cells ; Humans
  • References: Skylaki, S., Hilsenbeck, O. & Schroeder, T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol. 34, 1137–1144 (2016). (PMID: 10.1038/nbt.3713) ; VanDersarl, J. J. & Renaud, P. Biomimetic surface patterning for long-term transmembrane access. Sci. Rep. 6, 1–10 (2016). (PMID: 10.1038/srep32485) ; Dhawale, A. K. et al. Automated long-term recording and analysis of neural activity in behaving animals. Elife 6, 1–40 (2017). (PMID: 10.7554/eLife.27702) ; Dipalo, M. et al. Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes. Nano Lett. 17, 3932–3939 (2017). (PMID: 10.1021/acs.nanolett.7b01523) ; Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012). (PMID: 10.1038/nnano.2012.8) ; Lin, Z. C., Xie, C., Osakada, Y., Cui, Y. & Cui, B. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 1–10 (2014). ; Park, H. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012). (PMID: 10.1038/nnano.2011.249) ; Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017). (PMID: 10.1038/nnano.2017.3) ; Hai, A. & Spira, M. E. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip 12, 2865–2873 (2012). (PMID: 10.1039/c2lc40091j) ; Hai, A., Shappir, J. & Spira, M. E. In-cell recordings by extracellular microelectrodes. Nat. Methods 7, 200–2 (2010). (PMID: 10.1038/nmeth.1420) ; Hai, A., Shappir, J. & Spira, M. E. Long-Term, Multisite, Parallel, In-Cell Recording and Stimulation by an Array of Extracellular Microelectrodes. J. Neurophysiol. 104, 559–568 (2010). (PMID: 10.1152/jn.00265.2010) ; Nogan, J. et al. High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons. Nano Lett. 17, 2757–2764 (2017). (PMID: 10.1021/acs.nanolett.6b04752) ; Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R. H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004). (PMID: 10.1038/nn1356) ; Tay, A., Kunze, A., Murray, C. & Carlo, D. Di. Induction of Calcium Influx in Cortical Neural Networks by Nanomagnetic Forces. ACS Nano 10, 2331–2341 (2016). (PMID: 10.1021/acsnano.5b07118) ; Abbott, J., Ye, T., Ham, D. & Park, H. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. Acc. Chem. Res. 51, 600–608 (2018). (PMID: 10.1021/acs.accounts.7b00519) ; Gao, R. et al. Outside looking in: Nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012). (PMID: 10.1021/nl301623p) ; Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012). (PMID: 10.1038/nnano.2011.223) ; Laxpati, N. G. et al. Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter. Front. Neuroeng. 7, 1–15 (2014). (PMID: 10.3389/fneng.2014.00040) ; Malyshev, A., Goz, R., LoTurco, J. J. & Volgushev, M. Advantages and limitations of the use of optogenetic approach in studying fast-scale spike encoding. PLoS One 10, 1–17 (2015). (PMID: 10.1371/journal.pone.0122286) ; Schoeters, R. et al. Comparison between Direct Electrical and Optogenetic Subthalamic Nucleus Stimulation. EMF-Med 2018 - 1st EMF-Med World Conf. Biomed. Appl. Electromagn. Fields COST EMF-MED Final Event with 6th MCM 1, 1–2 (2018). ; Ratnadurai-Giridharan, S., Cheung, C. C. & Rubchinsky, L. L. Effects of electrical and optogenetic deep brain stimulation on synchronized oscillatory activity in Parkinsonian basal ganglia. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 2188–2195 (2017). (PMID: 10.1109/TNSRE.2017.2712418) ; Entcheva, E. & Williams, J. C. Channelrhodopsin2 Current During the Action Potential: ‘Optical AP Clamp’ and Approximation. Sci. Rep. 4 (2014). ; Williams, J. C. & Entcheva, E. Optogenetic versus electrical stimulation of human cardiomyocytes: Modeling insights. Biophys. J. 108, 1934–1945 (2015). (PMID: 10.1016/j.bpj.2015.03.032) ; Ayling, O. G. S., Harrison, T. C., Boyd, J. D., Goroshkov, A. & Murphy, T. H. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat. Methods 6, 219–224 (2009). (PMID: 10.1038/nmeth.1303) ; Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010). (PMID: 10.1038/nprot.2009.228) ; Woong, K., Jennifer, K. N., Kunitake, M. E., Conklin, B. R. & Yang, P. Interfacing Silicon Nanowires with Mammalian Cells. J. Am. Chem. Soc. 129, 7228–7229 (2007). (PMID: 10.1021/ja071456k) ; Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. 107, 1870–1875 (2010). (PMID: 10.1073/pnas.0909350107) ; Lee, K. Y. et al. Coupling of semiconductor nanowires with neurons and their interfacial structure. Nanoscale Res. Lett. 5, 410–415 (2010). (PMID: 10.1007/s11671-009-9498-0) ; Lee, K. Y. et al. Vertical nanowire probes for intracellular signaling of living cells. Nanoscale Res. Lett. 9, 1–7 (2014). (PMID: 10.1186/1556-276X-9-1) ; Kim, H., Kim, I., Choi, H. J., Kim, S. Y. & Yang, E. G. Neuron-like differentiation of mesenchymal stem cells on silicon nanowires. Nanoscale 7, 17131–17138 (2015). (PMID: 10.1039/C5NR05787F) ; Kim, I. et al. Enhanced Neurite Outgrowth by Intracellular Stimulation. Nano Lett. 15, 5414–5419 (2015). (PMID: 10.1021/acs.nanolett.5b01810) ; Kim, I. et al. Large current difference in Au-coated vertical silicon nanowire electrode array with functionalization of peptides. Nanoscale Res. Lett. 8, 1–7 (2013). (PMID: 10.1186/1556-276X-8-1) ; Gunaydin, L. A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010). (PMID: 10.1038/nn.2495) ; Baek, H. et al. ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells. APL Mater. 5 (2017).
  • Substance Nomenclature: Z4152N8IUI (Silicon)
  • Entry Date(s): Date Created: 20200311 Date Completed: 20201123 Latest Revision: 20210309
  • Update Code: 20240513
  • PubMed Central ID: PMC7062878

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -