Zum Hauptinhalt springen

Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate.

McMahon, SA ; Zhu, W ; et al.
In: Nature communications, Jg. 11 (2020-01-24), Heft 1, S. 500
Online academicJournal

Titel:
Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate.
Autor/in / Beteiligte Person: McMahon, SA ; Zhu, W ; Graham, S ; Rambo, R ; White, MF ; Gloster, TM
Link:
Zeitschrift: Nature communications, Jg. 11 (2020-01-24), Heft 1, S. 500
Veröffentlichung: [London] : Nature Pub. Group, 2020
Medientyp: academicJournal
ISSN: 2041-1723 (electronic)
DOI: 10.1038/s41467-019-14222-x
Schlagwort:
  • Binding Sites
  • DNA metabolism
  • Models, Molecular
  • Plasmids genetics
  • Protein Domains
  • Structural Homology, Protein
  • Thermus thermophilus genetics
  • Adenine Nucleotides pharmacology
  • Clustered Regularly Interspaced Short Palindromic Repeats genetics
  • Endonucleases chemistry
  • Endonucleases metabolism
  • Oligoribonucleotides pharmacology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Commun] 2020 Jan 24; Vol. 11 (1), pp. 500. <i>Date of Electronic Publication: </i>2020 Jan 24.
  • MeSH Terms: Adenine Nucleotides / *pharmacology ; Clustered Regularly Interspaced Short Palindromic Repeats / *genetics ; Endonucleases / *chemistry ; Endonucleases / *metabolism ; Oligoribonucleotides / *pharmacology ; Binding Sites ; DNA / metabolism ; Models, Molecular ; Plasmids / genetics ; Protein Domains ; Structural Homology, Protein ; Thermus thermophilus / genetics
  • References: Rouillon, C., Athukoralage, J. S., Graham, S., Grüschow, S. & White, M. F. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 7, e36734 (2018). (PMID: 29963983605330410.7554/eLife.36734) ; Niewoehner, O. et al. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543–548 (2017). (PMID: 2872201210.1038/nature2346728722012) ; Kazlauskiene, M., Kostiuk, G., Venclovas, C., Tamulaitis, G. & Siksnys, V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357, 605–609 (2017). (PMID: 2866343910.1126/science.aao010028663439) ; Nasef, M. et al. Regulation of cyclic oligoadenylate synthesis by the S. epidermidis Cas10-Csm complex. RNA 25, 948–962 (2019). (PMID: 3107645910.1261/rna.070417.11931076459) ; Koonin, E. V. & Makarova, K. S. Discovery of oligonucleotide signaling mediated by CRISPR-associated polymerases solves two puzzles but leaves an enigma. ACS Chem. Biol. 13, 309–312 (2018). (PMID: 2893773410.1021/acschembio.7b0071328937734) ; Niewoehner, O. & Jinek, M. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6. RNA 22, 318–329 (2016). (PMID: 26763118474881010.1261/rna.054098.115) ; Foster, K., Kalter, J., Woodside, W., Terns, R. M. & Terns, M. P. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. RNA Biol. 16, 449–460 (2019). (PMID: 2999557710.1080/15476286.2018.149333429995577) ; Sheppard, N. F., Glover, C. V. 3rd, Terns, R. M. & Terns, M. P. The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease. RNA 22, 216–224 (2016). (PMID: 26647461471267210.1261/rna.039842.113) ; Han, W., Pan, S., Lopez-Mendez, B., Montoya, G. & She, Q. Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Res. 45, 10740–10750 (2017). (PMID: 28977519573784110.1093/nar/gkx726) ; Athukoralage, J. S., Graham, S., Grüschow, S., Rouillon, C. & White, M. F. A type III CRISPR ancillary ribonuclease degrades its cyclic oligoadenylate activator. J. Mol. Biol. 431, 2894–2899 (2019). (PMID: 31071326659989010.1016/j.jmb.2019.04.041) ; Lintner, N. G. et al. The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J. Mol. Biol. 405, 939–955 (2011). (PMID: 2109345210.1016/j.jmb.2010.11.01921093452) ; Athukoralage, J. S., Rouillon, C., Graham, S., Grüschow, S. & White, M. F. Ring nucleases deactivate Type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562, 277–280 (2018). (PMID: 30232454621970510.1038/s41586-018-0557-5) ; Makarova, K. S., Anantharaman, V., Grishin, N. V., Koonin, E. V. & Aravind, L. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front Genet. 5, 102 (2014). (PMID: 24817877401220910.3389/fgene.2014.00102) ; Deng, L., Garrett, R. A., Shah, S. A., Peng, X. & She, Q. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol 87, 1088–1099 (2013). (PMID: 2332056410.1111/mmi.1215223320564) ; Hatoum-Aslan, A., Maniv, I., Samai, P. & Marraffini, L. A. Genetic characterization of antiplasmid immunity through a Type III-A CRISPR-Cas system. J. Bacteriol. 196, 310–317 (2014). (PMID: 24187086391125510.1128/JB.01130-13) ; Jiang, W., Samai, P. & Marraffini, L. A. Degradation of phage transcripts by CRISPR-associated rnases enables Type III CRISPR-Cas immunity. Cell 164, 710–721 (2016). (PMID: 26853474475287310.1016/j.cell.2015.12.053) ; Rostol, J. T. & Marraffini, L. A. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nat. Microbiol 4, 656–662 (2019). (PMID: 30692669643066910.1038/s41564-018-0353-x) ; Staals, R. H. et al. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol. Cell 56, 518–530 (2014). (PMID: 25457165434214910.1016/j.molcel.2014.10.005) ; Staals, R. H. et al. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol. Cell 52, 135–145 (2013). (PMID: 24119403400694810.1016/j.molcel.2013.09.013) ; Taylor, D. W. et al. Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 348, 581–585 (2015). (PMID: 25837515458265710.1126/science.aaa4535) ; Liu, T. Y., Iavarone, A. T. & Doudna, J. A. RNA and DNA targeting by a reconstituted Thermus thermophilus Type III-A CRISPR-Cas system. PLoS ONE 12, e0170552 (2017). (PMID: 28114398525692310.1371/journal.pone.0170552) ; Shah, S. A. et al. Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. RNA Biol. 16, 530–542 (2019). (PMID: 2991192410.1080/15476286.2018.1483685) ; Agari, Y. et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395, 270–281 (2010). (PMID: 1989197510.1016/j.jmb.2009.10.057) ; Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a New HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018). (PMID: 2925881710.1016/j.jmb.2017.12.007) ; Rouillon, C., Athukoralage, J. S., Graham, S., Grüschow, S. & White, M. F. Investigation of the cyclic oligoadenylate signalling pathway of type III CRISPR systems. Methods Enzymol. 616, 191–218 (2019). (PMID: 3069164310.1016/bs.mie.2018.10.02030691643) ; Yang, W. Nucleases: diversity of structure, function and mechanism. Q Rev. Biophys. 44, 1–93 (2011). (PMID: 2085471010.1017/S003358351000018120854710) ; Long, F. et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr D. Struct. Biol. 73, 112–122 (2017). (PMID: 28177307529791410.1107/S2059798317000067) ; Holm, L. & Laakso, L. M. Dali server update. Nucleic Acids Res. 44, W351–W355 (2016). (PMID: 27131377498791010.1093/nar/gkw357) ; Tamulaitiene, G. et al. Restriction endonuclease AgeI is a monomer which dimerizes to cleave DNA. Nucleic Acids Res. 45, 3547–3558 (2017). (PMID: 2803932528039325) ; Deibert, M., Grazulis, S., Sasnauskas, G., Siksnys, V. & Huber, R. Structure of the tetrameric restriction endonuclease NgoMIV in complex with cleaved DNA. Nat. Struct. Biol. 7, 792–799 (2000). (PMID: 1096665210.1038/7903210966652) ; Jia, N., Jones, R., Yang, G., Ouerfelli, O. & Patel, D. J. CRISPR-Cas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA4 Cleavage with ApA>p formation terminating RNase activity. Mol. Cell 75, 944–956 e6 (2019). (PMID: 3132627310.1016/j.molcel.2019.06.01431326273) ; Molina, R. et al. Structure of Csx1-cOA4 complex reveals the basis of RNA decay in Type III-B CRISPR-Cas. Nat. Commun. 10, 4302 (2019). (PMID: 31541109675444210.1038/s41467-019-12244-z) ; Varble, A. & Marraffini, L. A. Three new Cs for CRISPR: collateral, communicate, cooperate. Trends Genet 35, 446–456 (2019). (PMID: 3103634410.1016/j.tig.2019.03.00931036344) ; Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016). (PMID: 27256883512778410.1126/science.aaf5573) ; Meeske, A. J. & Marraffini, L. A. RNA guide complementarity prevents self-targeting in Type VI CRISPR systems. Mol. Cell 71, 791–801 e3 (2018). (PMID: 3012253710.1016/j.molcel.2018.07.01330122537) ; Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019). (PMID: 31142834657042410.1038/s41586-019-1257-5) ; Elmore, J. R. et al. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes Dev. 30, 447–459 (2016). (PMID: 26848045476242910.1101/gad.272153.115) ; Estrella, M. A., Kuo, F. T., Bailey, S. & RNA-activated, D. N. A. cleavage by the Type III-B CRISPR-Cas effector complex. Genes Dev. 30, 460–470 (2016). (PMID: 26848046476243010.1101/gad.273722.115) ; Kazlauskiene, M., Tamulaitis, G., Kostiuk, G., Venclovas, C. & Siksnys, V. Spatiotemporal control of Type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62, 295–306 (2016). (PMID: 2710511910.1016/j.molcel.2016.03.024) ; Samai, P. et al. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell 161, 1164–1174 (2015). (PMID: 25959775459484010.1016/j.cell.2015.04.027) ; Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018). (PMID: 29449511662890310.1126/science.aar6245) ; Li, S. Y. et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 28, 491–493 (2018). (PMID: 29531313593904810.1038/s41422-018-0022-x) ; Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782 (2010). (PMID: 20513764287893810.1083/jcb.201004104) ; Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 227437722274377210.1038/nmeth.2019) ; Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl Crystallogr 43, 186–190 (2010). (PMID: 10.1107/S0021889809045701) ; Kabsch, W. Xds. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010). (PMID: 20124692281566510.1107/S0907444909047337) ; Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol Crystallogr. 66, 213–221 (2010). ; Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997). (PMID: 1529992610.1107/S090744499601225515299926) ; Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011). (PMID: 21460441306973810.1107/S0907444910045749) ; Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493) ; Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). (PMID: 2005704410.1107/S090744490904207320057044) ; Basham, M. et al. Data Analysis WorkbeNch (DAWN). J. Synchrotron Radiat. 22, 853–858 (2015). (PMID: 25931106441669210.1107/S1600577515002283) ; Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007). (PMID: 1800760810.1038/nprot.2007.40618007608) ; Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 44, W424–W429 (2016). (PMID: 27151198498793210.1093/nar/gkw389) ; Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 105, 962–974 (2013). (PMID: 23972848375210610.1016/j.bpj.2013.07.020)
  • Grant Information: BB/S000313/1 International RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); BB/R008035/1 International RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
  • Substance Nomenclature: 0 (Adenine Nucleotides) ; 0 (Oligoribonucleotides) ; 61172-40-5 (2',5'-oligoadenylate) ; 9007-49-2 (DNA) ; EC 3.1.- (Endonucleases)
  • Entry Date(s): Date Created: 20200126 Date Completed: 20200408 Latest Revision: 20210123
  • Update Code: 20231215
  • PubMed Central ID: PMC6981274

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -