Zum Hauptinhalt springen

Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer.

Joshi, K ; de Massy MR ; et al.
In: Nature medicine, Jg. 25 (2019-10-01), Heft 10, S. 1549
academicJournal

Titel:
Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer.
Autor/in / Beteiligte Person: Joshi, K ; de Massy MR ; Ismail, M ; Reading, JL ; Uddin, I ; Woolston, A ; Hatipoglu, E ; Oakes, T ; Rosenthal, R ; Peacock, T ; Ronel, T ; Noursadeghi, M ; Turati, V ; Furness, AJS ; Georgiou, A ; Wong, YNS ; Ben Aissa, A ; Sunderland, MW ; Jamal-Hanjani, M ; Veeriah, S ; Birkbak, NJ ; Wilson, GA ; Hiley, CT ; Ghorani, E ; Guerra-Assunção, JA ; Herrero, J ; Enver, T ; Hadrup, SR ; Hackshaw, A ; Peggs, KS ; McGranahan, N ; Swanton, C ; Quezada, SA ; Chain, B
Zeitschrift: Nature medicine, Jg. 25 (2019-10-01), Heft 10, S. 1549
Veröffentlichung: New York Ny : Nature Publishing Company ; <i>Original Publication</i>: New York, NY : Nature Pub. Co., [1995-, 2019
Medientyp: academicJournal
ISSN: 1546-170X (electronic)
DOI: 10.1038/s41591-019-0592-2
Schlagwort:
  • Aged
  • CD8-Positive T-Lymphocytes immunology
  • CD8-Positive T-Lymphocytes pathology
  • Carcinoma, Non-Small-Cell Lung immunology
  • Carcinoma, Non-Small-Cell Lung pathology
  • Carcinoma, Non-Small-Cell Lung therapy
  • Female
  • Humans
  • Lymphocytes, Tumor-Infiltrating immunology
  • Lymphocytes, Tumor-Infiltrating pathology
  • Male
  • Middle Aged
  • Mutation
  • Receptors, Antigen, T-Cell immunology
  • Carcinoma, Non-Small-Cell Lung genetics
  • Genetic Heterogeneity
  • Immunotherapy, Adoptive
  • Receptors, Antigen, T-Cell genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Corporate Authors: TRACERx consortium
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Med] 2019 Oct; Vol. 25 (10), pp. 1549-1559. <i>Date of Electronic Publication: </i>2019 Oct 07.
  • MeSH Terms: Genetic Heterogeneity* ; Immunotherapy, Adoptive* ; Carcinoma, Non-Small-Cell Lung / *genetics ; Receptors, Antigen, T-Cell / *genetics ; Aged ; CD8-Positive T-Lymphocytes / immunology ; CD8-Positive T-Lymphocytes / pathology ; Carcinoma, Non-Small-Cell Lung / immunology ; Carcinoma, Non-Small-Cell Lung / pathology ; Carcinoma, Non-Small-Cell Lung / therapy ; Female ; Humans ; Lymphocytes, Tumor-Infiltrating / immunology ; Lymphocytes, Tumor-Infiltrating / pathology ; Male ; Middle Aged ; Mutation ; Receptors, Antigen, T-Cell / immunology
  • Comments: Comment in: Nat Rev Clin Oncol. 2020 Jan;17(1):5. (PMID: 31645685) ; Erratum in: Nat Med. 2020 Jul;26(7):1148. (PMID: 32494063)
  • References: Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017). (PMID: 2803115910.1158/2159-8290.CD-16-0828) ; Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019). (PMID: 308947523089475210.1038/s41586-019-1032-7) ; McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016). (PMID: 4984254498425410.1126/science.aaf1490) ; Miao, D. et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat. Genet. 50, 1271–1281 (2018). (PMID: 30150660611911810.1038/s41588-018-0200-2) ; Jamal-Hanjani, M. et al. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol. 12, e1001906 (2014). (PMID: 25003521408671410.1371/journal.pbio.1001906) ; Feng, L. et al. Heterogeneity of tumor-infiltrating lymphocytes ascribed to local immune status rather than neoantigens by multi-omics analysis of glioblastoma multiforme. Sci. Rep. 7, 6968 (2017). (PMID: 28761058553724810.1038/s41598-017-05538-z) ; Wang, T. et al. The different T-cell receptor repertoires in breast cancer tumors, draining lymph nodes, and adjacent tissues. Cancer Immunol. Res. 5, 148–156 (2017). (PMID: 2803916110.1158/2326-6066.CIR-16-0107) ; Kuang, M. et al. A novel signature for stratifying the molecular heterogeneity of the tissue-infiltrating T-cell receptor repertoire reflects gastric cancer prognosis. Sci. Rep. 7, 7762 (2017). (PMID: 28798410555276510.1038/s41598-017-08289-z) ; Lin, K. R. et al. T cell receptor repertoire profiling predicts the prognosis of HBV-associated hepatocellular carcinoma. Cancer Med. 7, 3755–3762 (2018). (PMID: 29947152608919010.1002/cam4.1610) ; Reuben, A. et al. Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ Genom. Med. 2, 10 (2017). (PMID: 28819565555703610.1038/s41525-017-0013-8) ; Gerlinger, M. et al. Ultra-deep T cell receptor sequencing reveals the complexity and intratumour heterogeneity of T cell clones in renal cell carcinomas. J. Pathol. 231, 424–432 (2013). (PMID: 24122851424103810.1002/path.4284) ; Sherwood, A. M. et al. Tumor-infiltrating lymphocytes in colorectal tumors display a diversity of T cell receptor sequences that differ from the T cells in adjacent mucosal tissue. Cancer Immunol. Immunother. 62, 1453–1461 (2013). (PMID: 23771160571465310.1007/s00262-013-1446-2) ; Emerson, R. O. et al. High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lymphocytes in ovarian cancer. J. Pathol. 231, 433–440 (2013). (PMID: 24027095501219110.1002/path.4260) ; Jiménez-Sánchez, A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938 (2017). (PMID: 28841418558921110.1016/j.cell.2017.07.025) ; Cui, J. H. et al. TCR repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with cervical cancer. Front. Immunol. 9, 2729 (2018). (PMID: 30524447626207010.3389/fimmu.2018.02729) ; Bai, X. et al. Characteristics of tumor infiltrating lymphocyte and circulating lymphocyte repertoires in pancreatic cancer by the sequencing of T cell receptors. Sci. Rep. 5, 13664 (2015). (PMID: 26329277455698810.1038/srep13664) ; Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017). (PMID: 29132146614514610.1038/nature24462) ; Cui, C. et al. T cell receptor β-chain repertoire analysis of tumor-infiltrating lymphocytes in pancreatic cancer. Cancer Sci. 110, 61–71 (2019). (PMID: 3042661410.1111/cas.13877) ; Jin, Y. B. et al. TCR repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma. Cancer Immunol. Immunother. 67, 1719–1730 (2018). (PMID: 3015557610.1007/s00262-018-2237-6) ; Gros, A. et al. PD-1 identifies the patient-specific CD8 + tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014). (PMID: 24667641400155510.1172/JCI73639) ; Pasetto, A. et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016). (PMID: 27354337501095810.1158/2326-6066.CIR-16-0001) ; Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765 (2017). (PMID: 28475900573793910.1016/j.cell.2017.04.014) ; Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1 + CD8 + T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018). (PMID: 29892065611038110.1038/s41591-018-0057-z) ; Ahmadzadeh, M. et al. Tumor-infiltrating human CD4 + regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol. 4, eaao4310 (2019). (PMID: 30635355668554210.1126/sciimmunol.aao4310) ; Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019). (PMID: 3051025010.1038/s41591-018-0266-5) ; Zhang, C. et al. TCR repertoire intratumor heterogeneity of CD4 + and CD8 + T cells in centers and margins of localized lung adenocarcinomas. Int J. Cancer 144, 818–827 (2019). (PMID: 3015184410.1002/ijc.31760) ; Reuben, A. et al. TCR repertoire intratumor heterogeneity in localized lung adenocarcinomas: an association with predicted neoantigen heterogeneity and postsurgical recurrence. Cancer Discov. 7, 1088–1097 (2017). (PMID: 28733428562813710.1158/2159-8290.CD-17-0256) ; Robert, L. et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin. Cancer Res. 20, 2424–2432 (2014). (PMID: 24583799400865210.1158/1078-0432.CCR-13-2648) ; Cha, E. et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci. Transl. Med. 6, 238ra270 (2014). (PMID: 10.1126/scitranslmed.3008211) ; Kvistborg, P. et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8 + T cell response. Sci. Transl. Med. 6, 254ra128 (2014). (PMID: 2523218010.1126/scitranslmed.3008918) ; Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014). (PMID: 4246418424641810.1038/nature13954) ; Snyder, A. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med. 14, e1002309 (2017). (PMID: 28552987544611010.1371/journal.pmed.1002309) ; Yusko, E. et al. Association of tumor microenvironment T-cell repertoire and mutational load with clinical outcome after sequential checkpoint blockade in melanoma. Cancer Immunol. Res 7, 458–465 (2019). (PMID: 30635271639769410.1158/2326-6066.CIR-18-0226) ; Hogan, S. A. et al. Peripheral blood TCR repertoire profiling may facilitate patient stratification for immunotherapy against melanoma. Cancer Immunol. Res. 7, 77–85 (2019). (PMID: 3042510510.1158/2326-6066.CIR-18-0136) ; Hopkins, A. C. et al. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 3, 122092 (2018). (PMID: 2999728710.1172/jci.insight.122092) ; Oakes, T. et al. Quantitative characterization of the T cell receptor repertoire of naïve and memory subsets using an integrated experimental and computational pipeline which is robust, economical, and versatile. Front. Immunol. 8, 1267 (2017). (PMID: 29075258564341110.3389/fimmu.2017.01267) ; Uddin, I. et al. An economical, quantitative, and robust protocol for high-throughput T cell receptor sequencing from tumor or blood. Methods Mol. Biol. 1884, 15–42 (2019). (PMID: 3046519310.1007/978-1-4939-8885-3_2) ; Best, K., Oakes, T., Heather, J. M., Shawe-Taylor, J. & Chain, B. Computational analysis of stochastic heterogeneity in PCR amplification efficiency revealed by single molecule barcoding. Sci. Rep. 5, 14629 (2015). (PMID: 26459131460221610.1038/srep14629) ; Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017). (PMID: 2844511210.1056/NEJMoa1616288) ; Simoni, Y. et al. Bystander CD8 + T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018). (PMID: 2976972210.1038/s41586-018-0130-2) ; Thomas, N., Heather, J., Ndifon, W., Shawe-Taylor, J. & Chain, B. Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29, 542–550 (2013). (PMID: 2330350810.1093/bioinformatics/btt004) ; Sun, Y. et al. Specificity, privacy, and degeneracy in the CD4 T cell receptor repertoire following immunization. Front. Immunol. 8, 430 (2017). (PMID: 284508645390035) ; Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89–93 (2017). (PMID: 28636592561617110.1038/nature22383) ; Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 (2017). (PMID: 28636589579421210.1038/nature22976) ; Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017). (PMID: 5554367555436710.1038/nature22079) ; Bengsch, B. et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity 48, 1029–1045 (2018). (PMID: 29768164601019810.1016/j.immuni.2018.04.026) ; Bengsch, B. et al. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8 + T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog. 6, e1000947 (2010). (PMID: 20548953288359710.1371/journal.ppat.1000947) ; Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017). (PMID: 28628092603691010.1038/ni.3775) ; Danaher, P. et al. Gene expression markers of tumor infiltrating leukocytes. J. Immunother. Cancer 5, 18 (2017). (PMID: 282394712823947110.1186/s40425-017-0215-8) ; Clauset, A., Shalizi, C. R. & Newman, M. E. Power law distributions in empirical data. J. Soc. Ind. Appl. Math. 54, 661–703 (2009). ; Karatzoglou, A., Smola, A., Hornik, K. & Achim, Z. kernlab—an S4 package for kernel methods in R J. Stat. Software 11 (2004). ; Csardi, G. & Nepusz, T. The igraph software package for complex network research. Complex Systems 1695, 1–9 (2006). ; Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004). (PMID: 1468146530883710.1093/nar/gkh103) ; Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012). (PMID: 3290792329079210.1101/gr.129684.111) ; Cheng, J. et al. Single-cell copy number variation detection. Genome Biol. 12, R80 (2011). (PMID: 21854607324561910.1186/gb-2011-12-8-r80) ; Pollara, G. et al. Validation of Immune cell modules in multicellular transcriptomic data. PLoS One 12, e0169271 (2017). (PMID: 28045996520769210.1371/journal.pone.0169271)
  • Grant Information: FC001169 United Kingdom MRC_ Medical Research Council; 13-0316 United Kingdom AICR_ Worldwide Cancer Research; 20265 United Kingdom CRUK_ Cancer Research UK; FC001169 United Kingdom CRUK_ Cancer Research UK; 20764 United Kingdom CRUK_ Cancer Research UK; 24314 United Kingdom CRUK_ Cancer Research UK; 16463 United Kingdom CRUK_ Cancer Research UK; 19310 United Kingdom CRUK_ Cancer Research UK; 28990 United Kingdom CRUK_ Cancer Research UK; 22246 United Kingdom CRUK_ Cancer Research UK; FC001169 United Kingdom ARC_ Arthritis Research UK; 17786 United Kingdom CRUK_ Cancer Research UK; A17786 United Kingdom CRUK_ Cancer Research UK; 30025 United Kingdom CRUK_ Cancer Research UK; A22246 United Kingdom CRUK_ Cancer Research UK; MC_UP_1203/1 United Kingdom MRC_ Medical Research Council; 21999 United Kingdom CRUK_ Cancer Research UK; MR/M009033/1 United Kingdom MRC_ Medical Research Council; 25253 United Kingdom CRUK_ Cancer Research UK; 24956 United Kingdom CRUK_ Cancer Research UK; MR/N000838/1 United Kingdom MRC_ Medical Research Council; 211179/Z/18/Z United Kingdom WT_ Wellcome Trust; A20764 United Kingdom CRUK_ Cancer Research UK; 20466 United Kingdom CRUK_ Cancer Research UK; FC001169 United Kingdom WT_ Wellcome Trust; United Kingdom WT_ Wellcome Trust
  • Contributed Indexing: Investigator: C Swanton; M Jamal-Hanjani; A Georgiou; MW Sunderland; JL Reading; KS Peggs; E Ghorani; MR de Massy; E Hatipoglu; SA Quezada; B Chain; N McGranahan; A Hackshaw; CT Hiley; S Veeriah; R Rosenthal; GA Wilson; J Herrero; NJ Birkbak; Y Ngai; A Sharp; C Rodrigues; O Pressey; S Smith; N Gower; H Dhanda; TBK Watkins; M Escudero; A Stewart; A Rowan; J Goldman; P Van Loo; RK Stone; T Denner; E Nye; S Ward; E Lim; S Boeing; M Greco; MA Bakir; K Litchfield; J Nicod; C Puttick; K Enfield; E Colliver; B Campbell; C Abbosh; Y Wu; M Skrzypski; RE Hynds; T Marafioti; JA Hartley; P Gorman; HL Lowe; L Ensell; V Spanswick; A Karamani; D Moore; D Biswas; M Razaq; S Beck; A Huebner; M Dietzen; C Naceur-Lombardelli; MA Akther; H Zhai; N Kannu; E Manzano; SK Bola; E Hoxha; S Ogwuru; D Lawrence; M Hayward; N Panagiotopoulos; R George; D Patrini; M Falzon; E Borg; R Khiroya; A Ahmed; M Taylor; J Choudhary; P Shaw; SM Janes; M Forster; T Ahmad; SM Lee; D Carnell; R Mendes; J George; N Navani; D Papadatos-Pastos; M Scarci; E Bertoja; RCM Stephens; EM Hoogenboom; JW Holding; S Bandula; G Price; S Dubois-Marshall; K Kerr; S Palmer; H Cheyne; J Miller; K Buchan; M Chetty; M Khalil; V Ezhil; V Prakash; G Anand; S Khan; K Lau; M Sheaff; P Schmid; L Lim; J Conibear; R Schwarz; J Tugwood; J Pierce; C Dive; G Brady; DG Rothwell; F Chemi; E Kilgour; F Blackhall; L Priest; MG Krebs; P Crosbie; J Le Quesne; J Riley; L Primrose; L Martinson; N Carey; JA Shaw; D Fennell; A Nakas; S Rathinam; L Nelson; K Ryanna; M Tuffail; A Bajaj; J Brozik; F Morgan; M Kornaszewska; R Attanoos; H Adams; H Davies; M Carter; CR Lindsay; F Gomes; Z Szallasi; R Salgado; I Csabai; M Diossy; H Aerts; A Kirk; M Asif; J Butler; R Bilanca; N Kostoulas; M MacKenzie; M Wilcox; S Busacca; A Dawson; MR Lovett; M Shackcloth; S Feeney; J Asante-Siaw; J Gosney; A Leek; N Totten; JD Hodgkinson; R Waddington; J Rogan; K Moore; W Monteiro; H Marshall; KG Blyth; C Dick; A Kidd; E Lim; P De Sousa; S Jordan; A Rice; H Raubenheimer; H Bhayani; M Hamilton; L Ambrose; A Devaraj; H Chavan; S Begum; A Mani; D Kaniu; M Malima; S Booth; AG Nicholson; N Fernandes; JE Wallen; P Shah; S Danson; J Bury; J Edwards; J Hill; S Matthews; Y Kitsanta; J Rao; S Tenconi; L Socci; K Suvarna; F Kibutu; P Fisher; R Young; J Barker; F Taylor; K Lloyd; T Light; T Horey; D Papadatos-Pastos; P Russell; S Lock; K Gilbert; B Naidu; G Langman; A Robinson; H Bancroft; A Kerr; S Kadiri; C Ferris; G Middleton; M Djearaman; A Patel; C Ottensmeier; S Chee; B Johnson; A Alzetani; E Shaw; J Lester; Y Summers; R Califano; P Taylor; R Shah; P Krysiak; K Rammohan; E Fontaine; R Booton; M Evison; S Moss; J Novasio; L Joseph; P Bishop; A Chaturvedi; H Doran; F Granato; V Joshi; E Smith; A Montero
  • Substance Nomenclature: 0 (Receptors, Antigen, T-Cell)
  • Entry Date(s): Date Created: 20191009 Date Completed: 20200121 Latest Revision: 20240210
  • Update Code: 20240210
  • PubMed Central ID: PMC6890490

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -